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Assignment 9

Hand in no. 2, 3, 6, and 7 by November 14.

In the following the Initial Value Problem (IVP) refers to x′ = f(t, x), x(t0) = x0, where f
satisfies the Lipschitz condition in some rectangle containing (t0, x0) in its interior, see Notes
for details.

1. Solve the IVP for f(t, x) = αt(1+x2), α > 0, t0 = 0, and discuss how the (largest) interval
of existence changes as α and x0 vary.

2. Let x be a solution to the IVP on (c, d), a subinterval of (a, b). Show that it extends to
be a solution on [c, d].

3. Let xi, i = 1, 2, be two solutions to the same IVP on the subinterval Ii of [a, b]. Show that
x1 is equal to x2 on I1 ∩ I2.

4. Optional. Deduce Picard-Lindelöf Theorem based on the ideas of perturbation of identity.
Hint: Take a particular

y =

∫ t

t0

f(t, x0)dt

in the relation x+ Ψ(x) = y.

5. Show that the solution to IVP belongs to Ck+1 (as long as it exists) provided f ∈ Ck for
k ≥ 1. In particular, y ∈ C∞ provided f ∈ C∞.

6. Consider the IVP for second order equation:

x′′ = f(t, x, x′), x(t0) = x0, x
′(t0) = x1 ,

where f ∈ C(R), R = [a, b]× [α, β]× [γ, δ]. Assume that f satisfies the Lipschitz condition

|f(t, x, x′)− f(t, y, y′)| ≤ L(|x− y|+ |x′ − y′|) , (t, x, x′), (t, y, y′) ∈ R .

Show that the IVP admits a unique solution in (t0 − ρ, t0 + ρ) for some ρ > 0 by carrying
out the following steps.

(a) Show that the IVP is equivalent to solving

x(t) = x0 + x1(t− t0) +

∫ t

t0

∫ s

t0

f(r, x(r), x′(r)) drds .

(b) Verify the space C1[a, b] is complete under the norm

‖x‖1 = ‖x‖∞ + ‖x′‖∞ .

(c) Apply the Contraction Mapping Principle in a closed subset of (C1[a, b], ‖ · ‖1).

7. Show that there exists a unique solution h to the integral equation

h(x) = 1 +
1

π

∫ 1

−1

1

1 + (x− y)2
h(y)dy,

in C[−1, 1]. Also show that h is non-negative.
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The following passages, which I already covered in class, are extracted from Chapter 4. Here
they are enclosed for easy references.

Lemma. Let x be a solution to the IVP above on [t0, t0 + c) for some c ∈ (t0, a). Suppose that
there is {tn}, tn ↑ c, such that limn→∞ x(tn) = x1 where (c, x1) lies in the interior of R. There
exists some δ > 0 such that x extends as a solution on [t0, c+ δ).

Proof.

First, we claim that
lim
t↑c

x(t) = x1 .

For, we have

|x(t)− x(tn)| =
∣∣∣∣∫ t

tn

f(s, x(s)) ds

∣∣∣∣ ≤M |t− tn| .
By letting n→∞, we get |x(t)− x1| ≤M |t− c|, from which we deduce limt↑c x(t) = x1.

Next, letting n→∞ in

x(tn)− x(t) =

∫ tn

t
f(s, x(s)) ds ,

we get

x(c)− x(t) =

∫ c

t
f(s, x(s)) ds ,

which shows that

x′(c) = lim
t↑c

f(c)− x(t)

c− t
= f(t, x(c)).

Hence x is differentiable at c (more precisely, left derivative exists) and satisfies the differential
equation.

Finally, since (c, x1) sits in the interior of R, we may apply Picard-Lindelöf Theorem to a small
rectangle inside R centered at (c, x1) to get a solution y to the same differential equation on
(c−δ, c+δ) for small δ. It is clear the function z(t) = x(t), t ∈ [t0, c), and z(t) = y(t) , t ∈ [c, c+δ)
defines a solution of the IVP extending x.

Proposition. Under the setting of Picard-Lindelöf Theorem, the unique solution exists on the
interval [t0 − a∗, t0 + a∗] where

a∗ = min

{
a,

b

M

}
.

Proof. We will prove the solution exists on [t0, t0 + a∗). Similarly one can show that it exists
on (t0 − a∗, t0]. Let

c∗ = sup{c : there exists a solution on [t0, t0 + c] .}

Then the solution is well-defined on [t0, t0 + c∗). If c∗ = a, then the solution exists on [t0, t0 + a)
and hence on [t0, a

∗). Let us assume c∗ < a. In view of lemma above, there is no sequence
tn ↑ c∗ such that (tn, x(tn)) converges to an interior point of R. Since c∗ < a, x(t) must either
converge to x0 + b or x0 − b. Let us assume it is the former. The proof is the same when the
latter holds. Letting n→∞ in the relation

x(tn)− x0 =

∫ tn

t)

f(s, x(s)) ds ,
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we obtain

b =

∣∣∣∣∣
∫ t0+c∗

t0

f(s, x(s)) ds

∣∣∣∣∣ ≤Mc∗ ,

which implies c∗ ≥ b/M . Hence the solution x exists on [t0, b/M).

According to Problem 2, the solution in fact exists on [t0 − a∗, t0 + a∗].


