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Assignment 9

Hand in no. 2, 3, 6, and 7 by November 14.

In the following the Initial Value Problem (IVP) refers to ' = f(t,x), x(to) = zo, where f
satisfies the Lipschitz condition in some rectangle containing (to,xo) in its interior, see Notes
for details.

1. Solve the IVP for f(t,x) = at(1+2?),a > 0, tg = 0, and discuss how the (largest) interval
of existence changes as a and g vary.

2. Let x be a solution to the IVP on (c,d), a subinterval of (a,b). Show that it extends to
be a solution on [c, d].

3. Let z;,i = 1,2, be two solutions to the same IVP on the subinterval I; of [a,b]. Show that
x1 is equal to x9 on I7 N Is.

4. Optional. Deduce Picard-Lindel6f Theorem based on the ideas of perturbation of identity.

Hint: Take a particular
t

Y= f(t7$0)dt

to

in the relation z + ¥(x) = y.

5. Show that the solution to IVP belongs to C**1 (as long as it exists) provided f € C* for
k > 1. In particular, y € C* provided f € C*°.

6. Consider the IVP for second order equation:
2" = f(t,z,2'), x(ty) = x0, 2'(to) = 71 ,
where f € C(R), R = [a,b] X [, 8] X [7,d]. Assume that f satisfies the Lipschitz condition
[f(t 2, 2') = f(t,y,9)] < Lz —y[+ 2" = y]) . (t2,2),(ty,y) €R.

Show that the IVP admits a unique solution in (tg — p, to + p) for some p > 0 by carrying
out the following steps.

(a) Show that the IVP is equivalent to solving
t s
x(t) =xzo + x1(t — to) + / flr,z(r), 2’ (r)) drds .
to Jto

(b) Verify the space Cl[a,b] is complete under the norm
2l = ll2lloo + 12 lloc -
(c) Apply the Contraction Mapping Principle in a closed subset of (C1[a,b], || - ||1)-

7. Show that there exists a unique solution h to the integral equation

1 [t 1
h(z) =1+ - /_1 mh(y)dy,

in C[—1,1]. Also show that h is non-negative.
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The following passages, which I already covered in class, are extracted from Chapter 4. Here
they are enclosed for easy references.

Lemma. Let z be a solution to the IVP above on [tg, o + ¢) for some ¢ € (tp,a). Suppose that
there is {t,},t, T ¢, such that lim,, . x(t,) = 1 where (¢, z1) lies in the interior of R. There
exists some 0 > 0 such that = extends as a solution on [tg, ¢ + 9).

Proof.

First, we claim that

limz(t) = 1 .
ggw() 3}

For, we have

2(t) — w(ta)| = < Mlt—ta] .

t f(s,z(s))ds

By letting n — oo, we get |z(t) — 21| < M|t — ¢|, from which we deduce lim. z(t) = z;.

Next, letting n — oo in
tn
w(tn) —x(t) = [ f(s,2(s)) ds ,
t
we get,

x@—mwleuM$wa

which shows that .
tTe c—1

= f(tax(c))'

Hence z is differentiable at ¢ (more precisely, left derivative exists) and satisfies the differential
equation.

Finally, since (¢, x1) sits in the interior of R, we may apply Picard-Lindeléf Theorem to a small
rectangle inside R centered at (c,x1) to get a solution y to the same differential equation on
(c—0,c+9) for small §. Tt is clear the function z(t) = x(t),t € [tg, ¢), and z(t) = y(t) , t € [¢, c+9)
defines a solution of the IVP extending x.

Proposition. Under the setting of Picard-Lindel6f Theorem, the unique solution exists on the

interval [to — a*, tp + a*] where
. b
a = 1min {a, M} .

Proof. We will prove the solution exists on [tg, o + a*). Similarly one can show that it exists
on (ty — a*, tg]. Let

¢ =sup{c: there exists a solution on [tg,tg + ] .}

Then the solution is well-defined on [tg, to + ¢*). If ¢* = a, then the solution exists on [tg, o+ a)
and hence on [tp,a*). Let us assume ¢* < a. In view of lemma above, there is no sequence
t, T ¢* such that (t,,x(t,)) converges to an interior point of R. Since ¢* < a, x(t) must either
converge to xg + b or g — b. Let us assume it is the former. The proof is the same when the
latter holds. Letting n — oo in the relation

w(tn) —wo= | f(s,2(s))ds ,
5]
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we obtain

b= < Mc*

)

/to+0* f(s,x(s))ds

to

which implies ¢* > b/M. Hence the solution z exists on [to, b/M).

According to Problem 2, the solution in fact exists on [ty — a*, tg + a*].



